

Cartwright Consulting Co.

www.cartwright-consulting.com pscartwright@msn.com

United States Office 8324 16th Avenue South Minneapolis, MN 55425-1742 Phone: (952) 854-4911 Fax: (952) 854-6964 European Office President Kennedylaan 94 2343 GT Oegstgeest The Netherlands Phone: 31-71-5154417 Fax: 31-71-5156636

Graywater Recovery & Reuse

Presented at:

2013 ASPE Technical Symposium

by

Peter S. Cartwright, PE

September 20, 2013

INTRODUCTION

Our world is not running out of water, but it is running out of readily accessible acceptable potable water.

Over the years, treatment technologies have been developed. Pumping, storage and distribution infrastructures have been designed and constructed. Regulations have been crafted to protect the health of the consumer and the integrity of the system.

Unfortunately, our municipal water infrastructure is in sad shape. Many, if not most, treatment plants are undersized and in a state of disrepair. Some of the U.S. water distribution systems are 100 years old. The FDA estimates that \$384 billion in improvements are needed through 2030 to continue supplying safe drinking water for the nation's current population of 300 million.

Based on the requirement to provide all households with high quality water meeting the latest Safe Drinking Water Standards, it makes no difference that less than 2% of this water is actually consumed. The water entering the residence is used once and then discharged to the sewer or septic system.

Likewise, our plumbing systems are currently designed to deliver only potable water to every usage point and collect and discharge the wastewater from those points through one piping system to the sewer or septic tank.

So, the bottom line is that the one line bringing in our drinking water also supplies the water for all the rest of our indoor water activities: flushing toilets, showering, bathing, washing hands and clothes, etc. These do not demand the same quality of water as for drinking and culinary activities.

If we divide our water usage activities into two categories:

Those which generate wastewater containing high concentrations of BOD (biochemical oxygen demand) – "Blackwater" and those that don't – "Graywater." We can classify our fixtures as follows:

Blackwater

Toilet/urinal Kitchen sink Dishwasher Disposer

Graywater

Bath/Shower Lavatory sink Washing machine

DOMESTIC RESIDENTIAL SOURCES

1998 Census data indicate that the average U.S. household size is 2.7 people, and an AWWA study determined the median daily per capita flow rate to be 54 to 67 gallons/day (204 to 253 liters/day) for residential applications.

If we use a figure of 60 gpd/person, the profile of all indoor household wastewater generation per person per day is summarized in the table below.

Water Source	Gallons/person/ day
Laundry	13.0
Bath	1.0
Shower	10.2
Handwashing	9.5
Toilet Flushing	16.2
Dishwasher	0.8
Leakage	8.3
Other	1.0

TYPICAL GRAYWATER SOURCES

Although the specific chemical parameters in this graywater result from the particular incoming water source (as well as from chemicals introduced during the activities), and can vary considerably from one household to another, the table below indicates the ranges of significant contaminants.

Parameter	Unit	Range
BOD ₅ (Biochemical Oxygen Demand)	mg/L	60-300
TSS (Total Suspended Solids)	mg/L	30-185
E.Coli (Bacteria)	cfu*/100 ml	80-30,000
Fecal Coliform (Bacteria)	cfu*/100 ml	50-100,000
P _{total} (Phosphorus)	mg/L	1-15
N _{total} (Nitrogen)	mg/L	4-30
pH (Acidity/Alkalinity)	units	5-10

*Colony Forming Units

By comparison, whereas blackwater contaminant concentrations for most parameters are close to those of graywater, the bacterial concentrations of blackwater are easily 100 to 1,000 times greater than those of graywater.

Whereas all water supplies contain contaminants which are brought into the home by the incoming water, the plethora of chemicals we put into water are too numerous to count. In addition to soaps, detergents, fabric softeners and other products used during domestic activities, even more contaminants are introduced from hands, faces, bodies and fabrics.

The following table lists typical sources of graywater chemical contaminants and concentrations.

Ingredient	Concentration (mg/L)
Sunscreen	1500
Moisturizer	1000
Toothpaste	3250
Deodorant	1000
Na ₂ SO ₄ (Sodium sulfate)	3500
NaHCO ₃ (Sodium bicarbonate)	2500
Na ₃ PO ₄ (Trisodium phosphate)	3900
Clay	5000
Vegetable Oil	700
Shampoo or Hand Soap	7200
Laundry Detergent	15000
Boric Acid	140
Lactic Acid	2800

One survey indicated that normal household products contain more than 2500 chemicals.

NON-RESIDENTIAL SOURCES

Given that graywater is generated as a result of human activity, there should be little difference between residential and non-residential graywater quality; however, the relative quantities of graywater produced vary considerably as a function of the facility. Following is a table listing total water usage by building type.

	Hospitals	Schools	Hotels	Office Buildings	Restaurants
Landscape Irrigation	10%	38%	21%	10%	3%
Restrooms, Showers	30%	43%	23%	39%	30%
Laundry	5%	3%	10%		_
Cleaning, Sanitation	5%	1%	12%		2%
Cooling, HVAC	30%	4%	5%	37%	2%
Kitchen	5%	6%	15%	2%	50%
Miscellaneous	15%	5%	14%	12%	13%

Non-Residential Water Usage by Building Type

Extracted from MCERF, "Water-Efficience Technologies for Mechanical Contractors: New Business Opportunities", Figure 1.

From the above, it is apparent that graywater could be reused in most of these water usage areas.

The leading U.S. standards development and testing organization in the area of water and wastewater treatment and distribution is NSF International.

They have developed 2 new product standards addressing graywater: NSF 350 and NSF 350-1, which establish design and performance requirements for treatment systems for wastewater from both residential and commercial facilities.

NSF/ANSI Standard 350 can be applied to only graywater as defined earlier or to combined graywater and blackwater. NSF/ANSI Standard 350-1 applies to subsurface discharge only, whereas Standard 350 addresses surface irrigation, toilet/urinal flushing and similar nonpotable applications.

Both standards define residential applications as wastewater flows up to 1500 gpd and commercial as generating flows exceeding 1500 gpd.

Commercial laundries are not categorized by flow rates.

The following tables summarizes these standards.

N 7212H 84N	
Building Types	Residential, up to 1,500 gallons per day
	Commercial, more than 1,500 gallons per day and all capacities of commercial laundry water
Influent Types	Combined black and graywater
	Graywater
	Bathing water only
	Laundry water only
Effluent Uses	Nonpotable applications, such as surface and subsurface irrigation and toilet and urinal flushing
Ratings	Two classifications that vary slightly in effluent quality:
	Class R: single-family residential
	Class C: multifamily and commercial
	Systems are further described based on the type of influent (combined, graywater, bathing only, laundry only)

Source: Tom Bruursema Plumbing Systems & Design October 2011

Building Types	Residential, up to 1,500 gallons per day
5 71	Commercial, more than 1,500 gallons per day and all capacities of commercial laundry water
Influent Types	Combined black and graywater
	Graywater
	Bathing water only
	Laundry water only
Effluent Uses	Subsurface irrigation only
Ratings	Single effluent quality with no classifications
	Systems are further described based on the type of influent (graywater, bathing only, laundry only).

Source: Tom Bruursema Plumbing Systems & Design October 2011 For graywater reuse applications, in addition to individual residences, the standards apply to such commercial applications as:

- Lodging facilities
- Business parks
- Schools
- Shopping establishments
- Public buildings without food processing or manufacturing operations

They also apply to laundry facilities for hospitals, hotels, rental uniforms, etc., where the wastewater may contain large amounts of soil and high strength cleaners.

The standards include requirements for:

- Water tightness
- Noise levels
- Access ports
- Monitoring
- Bypass
- Product literature
- Performance evaluation

TESTING REQUIREMENTS – RESIDENTIAL SYSTEMS

Both Standards 350 and 350-1 require 26 weeks of continuous testing with regularly scheduled sampling at a frequency of three days per week.

The following table lists the graywater challenge test water analysis:

Parameter	Range
TSS (Total Suspended Solids)	80-160 mg/L
BOD ₅ (Biochemical Oxygen Demand)	130-180 mg/L
Temperature	25-30°C
pH (Acidity/Alkalinity)	6.5-8 units
Turbidity	50-100 NTU
P _{total} (Phosphorus)	1-3 mg/L
N _{total} (Nitrogen)	3-5 mg/L
COD (Chemical Oxygen Demand)	250-400 mg/L
TOC (Total Organic Carbon)	50-100 mg/L
Total Coliform (Bacteria)	10 ³ -10 ⁴ cfu/100 mL
E.coli (Bacteria)	10 ³ -10 ⁴ cfu/100 mL

The challenge water is generated from normal household constituents mixed into tap water with hardness in the range of 110-220 mg/L (as $CaCO_3$) and alkalinity greater than 40 mg/L (as $CaCO_3$).

Depending upon the intended application against which the system is to be tested (bathing, laundry, combined graywater), the challenge water is to be prepared from following components:

Amount/100 L
30 g
3 g
2 g
19 g
21 g
3 g
2 L
10 g
23 g
10g

Bathing Source Water

The 30 day average concentration of the bathing water delivered to the system shall be as follows:

Parameter	Required Range
TSS (Total Suspended Solids)	50-100 mg/L
BOD ₅ (Biochemical Oxygen Demand)	100-180 mg/L
Temperature	25-35°C
pH (Acidity/Alkalinity)	6.0-7.5 units
Turbidity	30-70 NTU
P_{total} (Phosphorus)	1.0-4.0 mg/L
N _{total} (Nitrogen)	3.0-5.0mg/L
COD (Chemical Oxygen Demand)	200-400 mg/L
TOC (Total Organic Carbon)	30-60 mg/L
Total Coliform (Bacteria)	10 ³ -10 ⁴ cfu/100 mL
E.coli (Bacteria)	10 ² -10 ³ cfu/100 mL

Laundry Source Water

Wastewater Component	Amount/100 L
Liquid detergent (2X)	40 mL
Test dust	10 g
Secondary effluent	2 L
Liquid laundry fabric softener	21 mL
Na ₂ SO ₄	4 g
NaHCO ₃	2 g
Na ₃ PO ₄	4 g

The 30 day average concentration of the laundry water deliver to the system shall be as follows:

Parameter	Required Range
TSS (Total Suspended Solids)	50-100 mg/L
BOD ₅ (Biochemical Oxygen Demand)	220-300 mg/L
Temperature	25-35°C
pH (Acidity/Alkalinity)	7.0-8.5 units
Turbidity	50-90 NTU
P_{total} (Phosphorus)	<2 mg/L
N _{total} (Nitrogen)	4.0-6.0 mg/L
COD (Chemical Oxygen Demand)	300-500 mg/L
TOC (Total Organic Carbon)	50-100 mg/L
Total Coliform (Bacteria)	10 ³ -10 ⁴ cfu/100 mL
E.coli (Bacteria)	10 ² -10 ³ cfu/100 mL

Bathing and Laundry Source Waters Combined

Each 100 L challenge water shall be prepared using 53 L of bathing and 47 L laundry challenge waters. The 30 day average concentration of the graywater delivered to the system shall be as follows:

Parameter	Range
TSS (Total Suspended Solids)	80-160 mg/L
BOD ₅ (Biochemical Oxygen Demand)	130-180 mg/L
Temperature	25-30°C
pH (Acidity/Alkalinity)	6.5-8.0 units
Turbidity	50-100 NTU
P _{total} (Phosphorus)	1-3 mg/L
N _{total} (Nitrogen)	3-5 mg/L
COD (Chemical Oxygen Demand)	250-400 mg/L
TOC (Total Organic Carbon)	50-100 mg/L
Total Coliform (Bacteria)	10 ³ -10 ⁴ cfu/100 mL
E.coli (Bacteria)	10 ² -10 ³ cfu/100 mL

HYDRAULIC LOADING AND SCHEDULES

During the minimum 6 month (26 weeks) testing and evaluation period, the system shall be subjected to periods of design loading, followed by stress loading, and then additional weeks of design loading. Class R and Class C systems claiming service intervals of greater than 6 months shall be loaded beginning in week 27 at design loading, according to the time frame and % rated daily hydraulic capacity as shown below, and shall continue dosing such that the test period equals the prescribed service interval.

System Design	Design loading				Stress test					
			Last 4	Last 3.5			Power/equip-	Vacation	Water	Cleaning
	weeks	weeks	weeks	weeks	weeks	surge	ment failure		efficiency	solution
R-Bathing only	Х			Х			Х	Х	Х	
R-Laundry only	Х				Х	Х	Х	Х	Х	
R-Combined	Х				Х	Х	Х	Х	Х	
C-Bathing only		Х	Х				Х	Х		
C-Laundry only		Х	Х				Х	Х		
C-Combined		Х	Х				Х	Х		Х

Loading of the systems will be based on the following matrix:

Addition of cleaning solution during final 4.5 week of test

Stress events indicate typical events in a residence that affect treatment performance. These include clothes washing activities, increased hydraulic loadings to simulate working-parent events, power failure events and vacations.

Extreme stress conditions (overfeeding of corrosive cleaners, excessive hydraulic overloading, other conditions that deviate from the manufacturer's recommendations) are not included in the testing.

TESTING REQUIREMENTS – COMMERCIAL SYSTEMS

For systems designed to treat graywater from any source generating more than 1500 gpd, and from commercial laundry establishments producing wastewater of any capacity, testing is performed on the actual wastewater under field conditions.

The sampling and testing is performed under the same protocol as residential treatment systems.

EFFLUENT REQUIREMENTS

The treated effluent must meet the criteria as listed below for both residential and commercial systems:

	Clas	ss R	Class C		
Measure	Test Average	Single Sample Maximum	Test Average	Single Sample Maximum	
TSS (Total Suspended Solids) mg/L	10	30	10	30	
BOD ₅ (Biochemical Oxygen Demand) mg/L	10	25	10	25	
Turbidity NTU	5	10	2	5	
E.coli ² (Bacteria) MPN/100 mL	14	240	2.2	200	
pH (Acidity/Alkalinity) SU	6.0-9.0	NA ¹	6.0-9.0	NA	
Storage Vessel Disinfection mg/L	≥ 0.5 - ≤ 2.5				
Color	MR ³	NA	MR	NA	
Odor	Non-offensive	NA	Non-offensive	NA	
Oily Film and Foam	Non-detectable	Non-detectable	Non-detectable	Non-detectable	
Energy Consumption	MR	NA	MR	NA	
SAR	MR	MR	MR	MR	

Summary of effluent criteria for individual classifications

¹ NA not calculated

² Calculated as geometric mean

³ MR measured and reported only

REGULATIONS

As expected, state regulations addressing graywater reuse are highly variable, and only 12 states have listed requirements to date. The USEPA has guidelines, as well as NOWRA (National Onsite Wastewater Recycling Association).

A summary of these regulations, including those proposed, drafted and interim, are in the Appendix.

Regarding the acceptance of NSF350 by code-setting bodies, it is currently referenced in the following:

IAPMO Green Plumbing and Mechanical Code SupplementInternational Construction Code2015 International Plumbing Code (not yet published, but the language is finalized)

And is currently proposed in:

2015 International Residential Code

2015 Uniform Plumbing Code

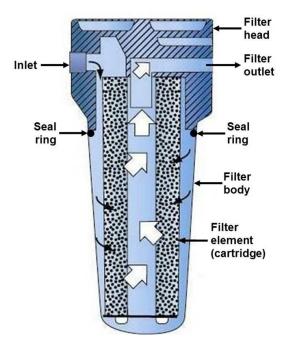
TREATMENT TECHNOLOGIES

For graywater to be reused, it almost always requires some treatment. The choice of technologies is usually dictated by these factors:

- Graywater quality
- Specific use of treated water
- Volume requirement

The key is to have an arsenal of technologies available to efficiently remove hazardous or undesirable contaminants from the supply. There is no single technology that will sufficiently and economically remove all classes of contaminants; however, there are treatment technologies that, collectively, are capable of effectively reducing the concentration of virtually any contaminant down to acceptable levels for any water reuse equipment, or to meet any quality requirement.

Water-borne contaminants can be classified as follows:


Class	Examples
Suspended solids	Dirt, clay, colloidal materials, silt, dust, insoluble metal oxides and hydroxides
Dissolved organics	Trihalomethanes, synthetic organic chemicals, humic acids, fulvic acids
Dissolved ionics (salts)	Heavy metals, silica, arsenic, nitrate, chlorides, sulfates
Microorganisms	Bacteria, viruses, protozoan cysts, fungi, algae, molds, yeast cells
Gases	Hydrogen sulfide, methane, radon, carbon dioxide

Numerous technology choices are available for removing the above contaminants, and the more common ones are listed below.

I) Suspended solids removal

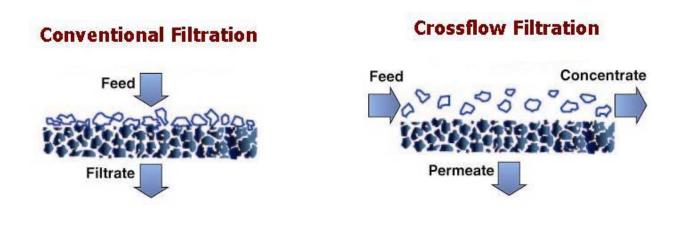
<u>Cartridge Filters</u> – cartridge filters are replaceable "inserts", usually cylindrical in configuration, that are inserted into housings, and are typically replaced when they have captured so much suspended solids that the pressure drop across the housing becomes unacceptable (usually above 10 psig). Offered in many different designs and micron removal ratings (down into the submicron range), they provide an excellent array of choices to the knowledgeable design engineer. They are typically used at flow rates less than 5 gpm.

Following is an illustration of a typical filter cartridge/housing unit:

Cartridge Filter/Housing

<u>Media Bed Filters</u> – These consist of a tank containing granular media such as sand, anthracite, garnet, etc., which capture suspended solids and retain them inside the bed until it is taken off line and backwashed. These bed filters are typically capable of removing suspended solids down to 10-20 microns in size, and are normally used at flow rates in the 5 to 20 gpm range. Media filters are backwashed to remove captured particles.

A typical media bed filter is illustrated below.


Media Bed Filter

<u>Carbon and Ceramic Block Filters</u> - These are similar in design to cartridge filters. The advantage of the carbon block cartridge is that it also performs the adsorptive function of activated carbon, described later. Ceramic cartridges can be cleaned and reused. Granular activated carbon can be utilized as medium in a media bed filter also.

<u>Microfiltration</u> - It is one of the four pressure-driven membrane technologies that are best explained as a group, below.

Membrane technologies are based on a process known as "crossflow" filtration, which allows for continuous treatment of liquid streams. In this process, the bulk solution flows over and parallel to the membrane surface, and because the system is pressurized, water is forced through the membrane and becomes "permeate". The turbulent flow of the bulk solution over the surface minimizes the accumulation of particulate matter.

The four major pressure-driven crossflow membrane technologies in use today are microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO), and all utilize pressure as the driving force. These technologies behave differently than filters in that (with some exceptions) the feed stream is continuously pumped at a high flow rate across the surface of the filter media (membrane), with a portion of this stream forced through the membrane to effect separation of the contaminants, producing the permeate. The concentrated contaminant remaining in the other stream (concentrate) exits the membrane element on a continuous basis. Because the concentrate stream is continuously removing contaminants, these technologies require only occasional backwashing or cleaning. Conventional and crossflow filtration are illustrated below.

Conventional vs. Crossflow Filtration

Microfiltration is the membrane technology designed for suspended solids removal, and there are systems available to remove particulate contaminants down into the submicron range, including bacteria. They are capable of operating at virtually all flow rates.

II) Dissolved organics removal

Activated carbon adsorption utilizes a specially prepared granular carbon medium capable of adsorbing dissolved organic contaminants and certain gases. It is very effective in removing many taste and odor contaminants, including chlorine, and is usually installed in housings similar to media or cartridge filters. The activated carbon material normally requires replacement once or twice per year.

Special resin adsorbents are also available for organics removal. They are designed for a particular removal function, such as humic acids, and require occasional regeneration and/or replacement.

Ultrafiltration is another membrane technology, with smaller pores than MF, capable of removing dissolved organics. Instead of adsorbing the contaminants, it is continuously removing them in the concentrate stream.

III) Dissolved salts removal

Most graywater contains relatively high concentrations of salts, both from the incoming water supply, as well as soluble contaminants resulting from activities within the facility. These can include both benign and potentially hazardous compounds. The most practical technology for salts reduction is reverse osmosis (or possibly nanofiltration), another of the membrane technologies. These technologies are often designed to operate at a single tap (point-of-use - POU). POU RO systems are very commonly used throughout the U.S. today.

IV) Disinfection

It is important to understand that neither ozone nor UV impart a residual disinfectant to the water. This is an important consideration when water must be stored for any length of time. Whereas a chlorine residual is recommended in private buildings, such as a home, it is important to remember that it is generally mandated for applications in public buildings.

This author's preference would be to ozonate the water entering the storage tank followed by feeding a low concentration of liquid bleach (sodium hypochlorite) to maintain a residual of 0.3-0.5 mg/L free chlorine. In this approach, the ozone will inactivate the majority of microorganisms, and the chlorine will minimize bacterial regrowth in the storage tank and distribution system. Activated carbon adsorption can be utilized at the point-of-use for chlorine removal.

Ozone will inactivate all microorganisms much more effectively than chlorine, and will also break down dissolved organic molecules to a certain extent, allowing activated carbon adsorption to be more effective.

Many experts favor a multi-barrier approach wherein disinfection may be utilized in conjunction with a separate technology such as ultrafiltration.

V) Gases

In general, graywater does not contain objectionable gases. On the other hand, bacterial action in the stored water may produce gases such as hydrogen sulfide that are both unpleasant and dangerous. This speaks to the value of rigorous microbial inactivation.

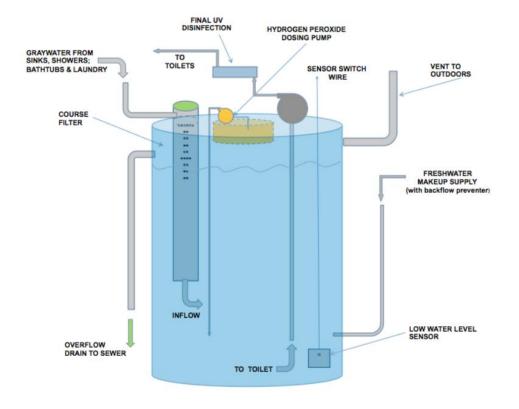
Activated carbon adsorption is usually effective in removing these gases.

TREATMENT SUMMARY

The selection of treatment technologies in any graywater reuse application is dictated by the following factors:

- Ultimate use of the recovered graywater.
- Specific contaminants in the graywater to be reduced.
- Total volume requirements.
- Regulations.

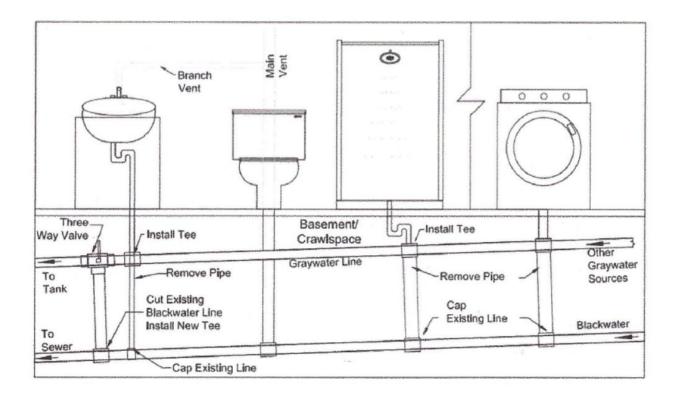
EXAMPLE SYSTEM


A Master's Thesis prepared by Brock Hodgson at Colorado State University, Fort Collins, CO evaluated the design requirements for a system treating graywater collected from showers and lavatory sinks from a number of units at a residence hall at the university. The treated water was to be used for toilet flushing.

The investigation included media filtration, cartridge filtration followed by disinfection. Both the sand filtration (20-40 μ) and 100 μ cartridge filtration effectively reduced TSS (total suspended solids) concentration.

For disinfection, the researcher evaluated UV (ultraviolet) with H_2O_2 (hydrogen peroxide), chlorine (sodium hypochlorite) only, UV with chlorine residual and ozone with chlorine residual. In terms of cost and efficacy, chlorine (sodium hypochlorite) performed the best, with almost complete inactivation of E.coli and total coliform bacteria.

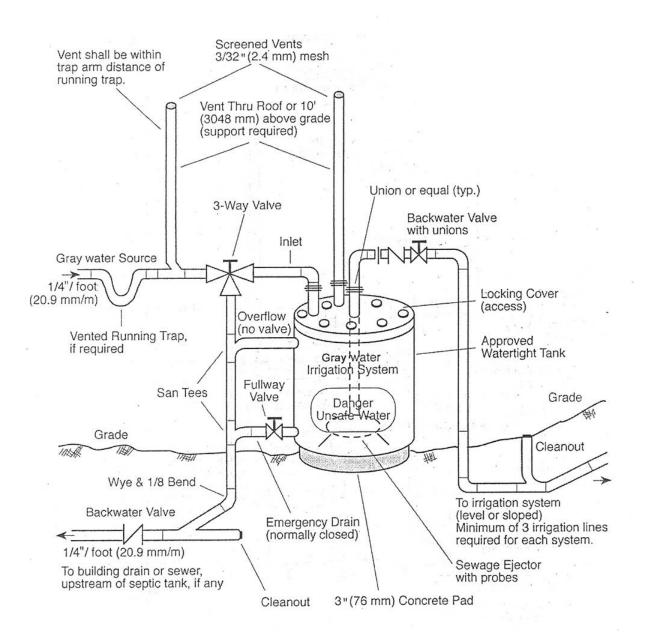
A photograph and illustration of this system are below:

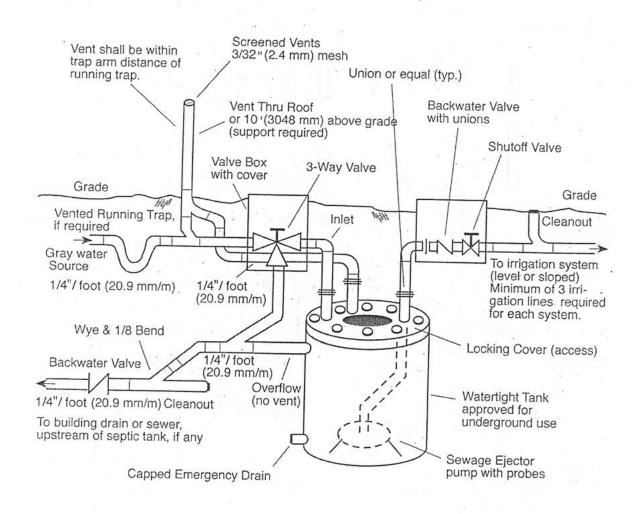


SYSTEM DESIGNS

The Urban Water Center at Colorado State University has significant expertise in graywater treatment system design and application of treated graywater.

They recommend that its use be confined to toilet flushing and outdoor irrigation. Those uses alone can reduce potable water demand in a residence by as much as 50%.


They offer the following retrofit design to separate and collect graywater from sinks, shower and washing machines:


Regarding outdoor irrigation, they recommend that the graywater be applied through subsurface or drip irrigation (no surface exposure).

WERF (Water Environment Research Foundation) sponsored a study on the effect of graywater application on landscape plants over a five year period in the southwest U.S. Out of 22 plant species studied, only 3 (avocado, lemon and Scotch pine) showed any negative response from graywater irrigation. Those responses included reduced growth, leaf burning and a small reduction in fruit production.

The following illustrations are from "Graywater Guide" published by the California Department of Water Resources, and depict surface mounted and underground storage tanks, including pumps and piping:

Graywater System Surface Mounted Tank – Pumped (conceptual)

Graywater System Underground Tank – Pumped (conceptual)

CONCLUSIONS

There is no doubt that the concept of graywater recovery and reuse is here to stay, and will surely become a viable water conservation option in the future.

As regulators acknowledge the many benefits of graywater reuse and mandate quality requirements for specific uses, the opportunities will grow rapidly.

It is important that we understand the technical details associated with graywater, and become proficient in the treatment technologies and system design requirements to take advantage of these opportunities.

APPENDIX

Other I Commenta, Impation of food crotes, recreational impoundments, realdential, school ground, open occurate or imports, normany throng my protection spraum entity and the entities profession, presentation in the sprate impation, tanknownen and impauration of croune and metricles access inductore my pation, tanknownen and impauration of croune and metricles access inductore impation, tanknownen and impauration of croune and metricles access inductore my pation, tanknownen and impauration of croune and metricles access inductore my pation, tanknownen and impauration of crounes and impause inductore inductore and inductore access inductor access inductores are estimate profession, inductores and an estimate inductores and inductores. Fulling that and unions, inductor access inductor inductores and inductores inductor and inductor context indocuration access and inductor and access inductor access inductor inductores and inductores. Fulling that and unions, inductor access inductor inductores and inductor and access inductor access inductor access inductores and and access inductor and access inductor access inductor is made between accentary 2.1 To and 3.170). Pre-protection, construction duat control and actively can meet in a whole there is minima polici. Construction duat control and actively can meet all and actively access inductor access in and inductors. The active and and actively can be protection. Construction duat control and a state is a whole meet and and is made between accentary 2.1 To and 3.170). Pre-protection, construction duat control and actively can meet and and inductor accentaries in and inductors are and and actively can be access in and and actively can be actively and and actively can be actively actively actively actively is and between accentaries by and and actively can be actively actively actively actively actively actine actively actively.		Imgation uses include golf counte, landscape projects.
집 양 유		6 - 9 (90%) Monitor 2 6 - 9 times per (90%) month.
A		Monitor) times pe month.
		s 10 mg/L 6-9 (30%) < 10 mg/L Montlar 2 6-9 times per (30%) month.
NT I I I I I I I I I I I I I I I I I I I		
Cliffeedual Confirmous plant, provide at the plant, provide at the plant, provide at the plant, provide at the model contact. At model contact, at model contact, the model contact of the and of the contact of the and of the contact of the and of the children before a the children befor	chlorine residual, messured at point where treated eff leaves reservoir or storage.	≥ 1 mg/L 30 minute Ci resid Detected
Turblidity Baoferial CI Recisional < 2 NTU,	median NHC, maximum 2001: The Maximum collorm (CFU/100 mL) - median ND, maximum i s200	 A I CFUIDD ML FC, median; running count over list? 1 days; not to exceed 14100 mL. 100 GFUI100 mL FC, median; from list? 1 days.
Turbidity - 2 NTU , max of < 5 NTU 956 in 2 NTU 956 in 2 NTU 956 in 2 NTU 4 5 2 NTU 6 4 2 NTU 6 4 2 NTU 6 mediatrix 5 mediatrix 5 mediatrix 5 mediatrix 6 mediatrix		≤ NTU < 5 NTU
138 5 5 mpL 138 5 5 mpL 138 5 5 mpL 138		s 5 mg/L <10 mg/L
800 5.20 mpt L 6.20 mpt L 6.60 mpt L 6.61 mpt L	median; s 20 mg/L maximum	< 10 mg/L <
197 53 197 197 197 197		
Liberature At the second		
La contectuting Flucting γ τε γ		Yes

UV dose 100 mJrcm ² . Intgation uses include golf course, pisyground or park; hydroseeding.	Irrigation of freewood, ornamental nursery stoch, Christimas trees, sod or pasture for animats. Irrigation of freewood, ornamental nursery stoch, Christimas trees, sod or pasture for impation of forewood, ornamental nursery stock. Christimas trees, sod or pasture for minalis, processed food crops, orchands or integrand a directly to soli, timotocope impation of for curst, centeries, or mouther to hubithesis and underset. Bome & foundards, commercial or construction user, where supply on hubithesis and important.	Bame uses as Class C, plus: non-residential foliet or urnal fluahing, foor drain trap primag. Water supply source for restricted recreational impoundments. Bame uses as Class B, plus: impation for any apricultural or horitoutural use; landscape applied of plants programme, coloro yards, restricted and strategic and accessible b the public. Commercial car warming or fournation and the water in not impoundments. Artificial groundwater recharge by surface infiliation or subsurface injection.	Revidential and landscaping, parts, goif courses, school yards and athletic fields. Where public is not present during imgation activities or would not come into contact with reclaimed water. Receasing on toologo and non-forces, landscape rimgation hold method open accessions: Into human of zevers, street cleaning, washing, dust control. Freinghing action, southins, funding of zevers, street cleaning, washing, dust control. Freinghing	Also have limit of a 15 mpL oil and prease. Also have limit of < 15 mpL oil and prease. So 9 Surface impation except food crops, vehicle washing augregate and making washing, a conditioning, soil compaction, dust control, washing augregate and making 5 to 9	Interactication and matter (and an approvement, construction) and metalectical interaction and more conditioning. Are protection, construction, on manufactual fructuation and conditioning. Are protection, construction, on an architection commercials and fructuation are fundamenter (automore). The protection commercials are conditioning, <u>Art matter</u> and hold roos truttaria for allocation are are fundamenter are fundamenter are fundamenter are are are are are are are are are a
s 10 mg/L					U.
z 10 mg/L 15 minute Ci resid				z 1 and s 10 mg/L free Ci resid z 1 and s 10 mg/L free Ci resid	z 1 mg/L 30 minute Ciresid minutes minutes
< 2.2 CFU/100 mL FC, ≥ 10 mg/L 15 median over 7 days; max minute Ci resid s14 in any sample	 a 30 day long mean of 125 E. collifloo mL and 405 E. collifloo mL in any slagle sample. a 23 TC/100 mL based on 18417 days, and 340 TC/100 mL in any wo consecutive samples. 	# 2 TOHOD ML based on last 7 toy: and 4 22 TOHOD ML based on last 7 bay: and 4 23 TOH asmyor method median asmyor method median of 2 21 TOHOD ML based on of 2 21 TOHOD ML based on 100 mL in any single sample.	3 NTU ± 20 CFU100 mL FC median. 35 max z 200 CFU100 FC median. na 4 max amminet. max 680; 2 NTU z ± 20 CFU100 mL FC MTU max. median	 200 frees collform 200 frees collform CPU/00 mL No detectable freat 21 and s 10 mgL free 0/ 200 frecolform CPU/100 = 1 and s 10 mgL free 0/ 	 * 16 - CU100 mL * 16 - CU100 mL * 1 mpL 10 minute Cireald minute Cireald minute Cireald minute Cireald * 1 mpL 10 * 200 - CFU100 mL median * 1 mpL after 30 * 800 - CFU100 mL for E
		Before disinfection, a 2 NTU within 24 hr period; 5 period; 5 nTU as within 24 hr period; 24 hr period; 24 hr period; 24 hr period; 24 hr period;	≤ 3 NTU ≤ 5 NTU ≤ 2 NTU NTU mak, continuous		≤2 NTU < 5 NTU
s 5 mg/L			4 30 mBL	s 30 mgl. s 35 mgl. « 60 mgl. s 5 mgl. « 10 mgl. s 5 mgl. s 10 mgl. s 30 mgl.	 10 mp/L 2 MTU 2 0 mp/L 5 MTU
			4 5 mg/L 4 20 mg/L 4 30 mg/L	s 30 mpL s 10 mpL s 10 mpL s 30 mpL	≤ 10 mg/L
a I		2			2
		Yes	5 S		a a